人类的与众不同之处就在于能够学习,这也一直是传统人工智能一直努力要实现的。第一章中描述的系统只有在能够遵从规则时进行学习,这些知识是从“知识工程师”的知识中提炼并编入系统架构的。它是对知识自上而下的一种想象,并暗示一个假设,即机器不能自动学习知识。相反,必须将知识进行编程,而且一次编一条。这一点在很多情况下都能够很好地实现,进而在可接受的水平上完成有限的任务。随着解决方案的增多,问题也开始显现。像官僚机构一样,它们开始变得庞大、笨拙、缓慢而且昂贵。
这提出了一个显而易见的问题。华盛顿大学计算机科学教授普德罗·多明戈斯(Pedro Domingos)指出:“如果机器人掌握了人类除学习以外的所有能力,人类很快就会抛弃它。”但是从一开始就存在一种与人工智能的发展并行的观点,这一观点现在正触发该领域的诸多进展。该人工智能学派不是将思维概念化,而是源于在电脑内部建立大脑模型。该学派不相信逻辑推理是获取真理的最佳(可能是唯一的)途径,而是采用基于观察和实验的实证研究法。这类人工智能并非知识工程师的作品,而是属于名为“机器学习者”的计算机科学家领域。
这一流派的人工智能由统计学家、神经科学家和理论物理学家开创的概率模型主导,大部分基于所谓的“神经网络”(或者计算术语中所说的“神经网”)来运行,该网络的功能与人脑近似。信息在人脑中以神经元电子放电模式存在。人脑中约有1 000亿个神经元,大约和银河系中的星星一样多。记忆是通过加强不同神经元共同放电而形成的:这一过程被称作“长时程增强”。尽管我们尚须建立一个与人脑一样复杂的神经网络(下一章将详细介绍),但人工神经网络为创造记忆和学习借用了人脑的机制。人脑与神经网络最基本的不同在于,人脑中的长时程增强是一个生物化学过程,而在神经网络中,学习是通过修改其自身代码,以在复杂或不明朗的情况下,找到输入和输出之间或者原因和结果之间的联系而发生的。
虽然神经网络今天在人工智能领域具有重要地位,但在过去许多年里,它都是被忽视的;它被视作真正人工智能的“异父兄弟”。正如20世纪80年代进入这一领域的知名研究人员戴维·艾克利(David Ackley)所说:“我们接触到神经网络时,人们并未将其视作人工智能。于是,我们被人工智能拒之门外。当时,人们认为人工智能是与符号相关的。它所涉及的是生产系统、专家系统等。进入卡内基–梅隆大学读研究生时,我已经十分厌倦与传统的符号化的计算机相关的事物……我似乎对推理的关注过多,而对判断的关注太少。”
艾克利影响了一代人工智能研究者,他们几乎使统计工具替代了主流意识中的传统人工智能。这样一来,神经网络就实现了以前的研究人员做梦都想实现的东西:建造能够学习如何玩电子游戏、理解语言、识别相片中的人脸或开车比人类更安全的机器。
我们在本章中将介绍一些这样的应用。但是在此之前,我们必须回到过去,去认识一个名叫圣地亚哥·拉蒙·卡哈尔(Santiago Ramóny Cajal)的人。